Incorporating Advice into Evolution of Neural Networks

نویسندگان

  • Chern Han Yong
  • Kenneth O. Stanley
  • Risto Miikkulainen
چکیده

Neuroevolution is a promising learning method in tasks with extremely large state and action spaces and hidden states. Recent advances allow neuroevolution to take place in real time, making it possible to e.g. construct video games with adaptive agents. Often some of the desired behaviors for such agents are known, and it would make sense to prescribe them, rather than requiring evolution to discover them. This paper presents a technique for incorporating human-generated advice in real time into neuroevolution. The advice is given in a formal language and converted to a neural network structure through KBANN. The NEAT neuroevolution method then incorporates the structure into existing networks through evolution of network weights and topology. The method is evaluated in the NERO video game, where it makes learning faster even when the tasks change and novel ways of making use of the advice are required. Such ability to incorporate human knowledge into neuroevolution in real time may prove useful in several interactive adaptive domains in the future.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Incorporating Advice into Neuroevolution of Adaptive Agents

Neuroevolution is a promising learning method in tasks with extremely large state and action spaces and hidden states. Recent advances allow neuroevolution to take place in real time, making it possible to e.g. construct video games with adaptive agents. Often some of the desired behaviors for such agents are known, and it would make sense to prescribe them, rather than requiring evolution to d...

متن کامل

Image Backlight Compensation Using Recurrent Functional Neural Fuzzy Networks Based on Modified Differential Evolution

In this study, an image backlight compensation method using adaptive luminance modification is proposed for efficiently obtaining clear images.The proposed method combines the fuzzy C-means clustering method, a recurrent functional neural fuzzy network (RFNFN), and a modified differential evolution.The proposed RFNFN is based on the two backlight factors that can accurately detect the compensat...

متن کامل

A Differential Evolution and Spatial Distribution based Local Search for Training Fuzzy Wavelet Neural Network

Abstract   Many parameter-tuning algorithms have been proposed for training Fuzzy Wavelet Neural Networks (FWNNs). Absence of appropriate structure, convergence to local optima and low speed in learning algorithms are deficiencies of FWNNs in previous studies. In this paper, a Memetic Algorithm (MA) is introduced to train FWNN for addressing aforementioned learning lacks. Differential Evolution...

متن کامل

Analysing the Evolvability of Neural Network Agents Through Structural Mutations

This paper investigates evolvability of artificial neural networks within an artificial life environment. Five different structural mutations are investigated, including adaptive evolution, structure duplication, and incremental changes. The total evolvability indicator, Etotal, and the evolvability function through time, are calculated in each instance, in addition to other functional attribut...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005